
The quantum mechanics of the supersymmetric nonlinear σ-model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 2945

(http://iopscience.iop.org/0305-4470/17/15/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) 2945-2954. Rinted in Great Britain 

The quantum mechanics of the supersymmetric nonlinear 
a-model 

A C Davist, A J Macfarlanet, P C Popatt and J W van HoltenS 
t Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW, UK 
$ Physics Department, University of Wuppertal, D-5600 Wuppertal, Federal Republic of 
Germany 

Received 29 May 1984 

Abstract. The classical and quantum mechanical formalisms of the models are developed. 
The quantisation is done in such a way that the quantum theory can be represented explicitly 
in as simple a form as possible, and the problem of ordering of operators is resolved so 
as to maintain the supersymmetry algebra of the classical theory. 

1. Introduction 

In this paper we study the N =  1 supersymmetric nonlinear a-model in one (time) 
dimension on a Riemannian manifold M of metric gip Setting out from a detailed 
analysis of the canonical formalism of the classical theory, we show how to formulate 
the quantum mechanical version of the model, performing the quantisation in such a 
way that as simple as possible a representation of the theory is obtained, and handling 
the order of operators problem so that the supersymmetry algebra is properly 
maintained. 

The subject of supersymmetric quantum mechanics has seen continued interest 
starting with early work of Witten (1981), and of Salomonson and van Holten (1982) 
in which, amongst other things, the role of instantons in supersymmetry breaking is 
discussed. We note also more recent work by Abbott and Zakrzewski (1984) on this 
topic. There has been a review by Cooper and Freedman (1983) in which, in addition, 
the relationship of supersymmetric quantum mechanics to stochastic quantisation is 
developed. Important work of Witten (1982) introducing the index now generally 
called the Witten index, indicates how calculations done for supersymmetric quantum 
mechanics have implications for the question of supersymmetry breaking for the 
corresponding higher-dimensional field theories. The Witten index is discussed further 
in a paper by Lancaster (1982) in which quantum mechanical theories with extended 
supersymmetries are considered. In this context, we would cite the interesting paper 
of de Crumbrugghe and Rittenberg (1983) in which the possibilities for extended 
supersymmetries in quantum mechanics were surveyed. The present authors (Davis 
et a1 1983a, 1984) have been interested in supersymmetric quantum mechanical models 
in which there are internal symmetries of either compact or non-compact nature. The 
interest in non-compact theories stems from the existence of hidden cr-model structures 
of non-compact nature within extended supergravity theories in four dimensions. In 
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order to gain insight into the implications of the non-compactness of the symmetry, 
we have studied (Davis et a1 1983b, 1984) analogous models in lower, i.e. two or even 
one, dimension. 

The most general class of theories studied previously by the authors concerned 
SO( N + 1 ) or SO( N, 1 ) a-models, respectively of compact and non-compact type. The 
establishment of the quantum mechanical versions of these theories was vastly sim- 
plified by the use of coordinate systems in which the metric g, of the theory is 
proportional to the flat space metric T,, with TI = 8, for SO( N + l ) ,  and such that 
Too = - 1 and T, = a,,, 1 S i, j s N, for SO( N, 1). In the present paper, we address the 
general problem of a a-model on a manifold with a general metric g,. In a companion 
study, analogous results are presented for a-models with extended N = 2 supersym- 
metry. 

As a preliminary, we study the classical version of the model, which through its 
Grassmann variable sector gives rise to constraints. We study the canonical formalism 
in terms of fundamental variables and their Dirac bracket structure. We use this 
formalism to discuss supersymmetry transformations and to derive the usual supersym- 
metry algebra. Further we identify a set of variables 

x I ,  R,, A:, (1.1) 

defined below, in terms of which the ordinary and Grassmann sectors of the set of 
canonical equations of the model decouple. 

One begins the passage to quantum mechanics by replacing the real fundamental 
classical variables of the theory by the corresponding Hermitian quantum operators, 
and by replacing Dirac brackets of the former by the appropriate quantum brackets 
of the latter. This is a straightforward matter. Further, for the set ( l . l ) ,  the only 
non-trivial results are 

where vQb is the local flat space metric for M. Since there is a decoupling of the 
bosonic and fermionic variables, this allows a natural representation of R, in terms of 
-i 8 / 8 9  to be used along with a natural Fock space representation of the fermionic 
variables. As 1 S a, p S 2, the latter is achieved by defining the annihilation operators 

A" = ( A Q  + iA; ) /&,  ( 1.4) 
which obey 

{A", Ab+} = qab. 

This representation allows, in principle, the transition from the operator equations of 
the theory to an explicit (matrix) Schrodinger equation or generalised Laplace Beltami 
equation. 

For the observables of the theory like Qa, the supercharges, and H, the Hamiltonian, 
there is an operator ordering problem to be solved before suitable quantum expressions 
for these operators can be displayed. In fact, supersymmetry simplifies the problem. 
The demands that 0, be Hermitian and reduce to the known classical formula in terms 
of fundamental variables in the classical limit fixes Qa uniquely. There then remains 
the non-trivial task of showing that this definition satisfies the quantum mechanical 
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supersymmetry algebra 

QaQp + QpQ, =2S&q", 

and thereby identifying the (automatically Hermitian) expression for Hqu. Of course, 
Hqu so found should and does reduce to the known classical expression for H in terms 
of fundamental variables in the classical limit. 

The content of the paper is summarised as follows. Section 2 reviews the classical 
description of the N = 1 supersymmetric model on a Riemannian manifold with metric 
g,. This discussion owes much to corresponding work in space-time of two dimensions, 
in which context see Freedman and Townsend (1981), Alvarez-Gaume and Freedman 
(1983) and Witten (1982). Section 3 develops the canonical formalism and discusses 
the supersymmetry algebra using it. Section 4 exhibits the choice of coordinates in 
which the algebra of the real and the Grassmann coordinates decouples. Section 5 
discusses quantisation using the latter special set of coordinates to give a natural and 
especially simple representation of the quantum mechanics. Section 6 discusses the 
problem of operator ordering that must be solved to attain quantum mechanical 
formulae for the supercharges and the Hamiltonian that satisfy the usual supersymmetry 
algebra quantum mechanically. Operator ordering problems for (bosonic) cr-models 
have been studied before by Velo and Wess (1971) and by Charap (1973) but in many 
ways supersymmetry simplifies matters since solving the (simpler) problem for the 
supercharges turns out to be sufficient to provide a direct route to the required 
Hamiltonian. 

2. The classical supersymmetric nonlinear a-model 

The bosonic sector of the model is defined in terms of n real fields x ' ( t ) ,  which are 
real functions from time onto a Riemannian manifold M with metric g,. The action is 

S = i  dtgl,x'xJ (2.1) 5 
and this is invariant under coordinate reparametrisations of M. 

mann variables e,, cy = 1,2, and introduce a set of n real superfields 
To construct the N = 1 supersymmetric extension, we employ a pair of real Grass- 

0' = X I  +iB,s,,+; +$iB,e,,B,F'. (2.2) 

Here e,@ = -epo, E , *  = 1. Also, the t,bb are real Grassmann variables. The standard 
supersymmetry transformations of superfields like the a' are given by 

6 0 '  = -e,2,cp1, (2.3) 

9, = a/ae, +iB,a/at. (2.4) 

Sx' = -ie,e,p+b, S+h = --E,F' - E , ~ E & ' ,  SF' = ie,(a/at)t,bt. (2.5) 

where E,, cy = 1,2, denote a pair of real Grassmann parameters, and 9, is given by 

In terms of components, (2.3) reads as 

Introducing next the supercovariant derivatives 

0, = d/M,  -io, a la t ,  
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which anticommute with the 2?a, we see that De@.' possesses superfield transformation 
properties, as also does the superfield 

A = -~g,j(@)Da@'iEapDpW'. (2.7) 

From A, we construct an action 

L =  d28A. 5 S =  dtL,  5 
Since, from (2.8), we see that L is the 'F component' of A, the change SL in L under 
a supersymmetry transformation is given by 

SL = i(d/at)eaVa, (2.9) 

9 a = $i J/ k gjj, k + &,.&e; + f g,F - f Eap g, XJ. 

where qa is the '+ component' of A 

(2.10) 

Hence S is a supersymmetric action, and is the required supersymmetric extension of 
(2.1). Calculation L as the 'F component' of A, we obtain the Lagrangian of the model 
in the form 

(2.1 1) 

In (2.11), the fields F'  are auxiliary fields which can be eliminated with the aid of 
their equations of motion 

Fk = fi$:EapflpI'ff. (2.12) 

Hence, we have (Witten 1982, Freedman and Townsend 1981, Davis et a1 1984) 

= $g&'2 +iiglJ$b + A R  Ip. J g $ f  Eap@@$;Ey&$j ,  (2.13) 

where 

Ova = $a +r',kxp$k. (2.14) 

Further, we may calculate the supercharge Qa corresponding to (2.5) via Noether's 
theorem written in the form 

-iEaeapQp = Sx' aL/ai '  + S$L dL/a& - iE0qa. (2.15) 

Using (2.1 1 )  and (2.10), this leads to the result 

Qa = cLkg,+'. (2.16) 

3. Classical canonical formalism 

From (2.13), we find the conjugate momenta 

p ,  = aL/a i '  = goxJ +tig,j, k@i*k, 
7. = aL/a,,j,' = -L. 2%j@. 
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It follows immediately from (3.2) that the canonical formalism involves constraint 
functions 

xi = T~ +$gij@. (3.3) 

This requires use of the formalism of Dirac, as generalised by Casalbuoni (1976) to 
take account of Grassmann variables. Using naive Poisson brackets 

{XI, Pj} = Sj, {+', T , } = - s !  I' (3.4) 

{xi, xj} = cij = -ig El, (3.5) 

we obtain 

and hence for any two field variables A and B define the Dirac bracket {A ,B}* .  
Explicitly we have 

{A,  B } * = { A ,  B ) - { A ,  Xi)ig"{xj, B ) .  (3.6) 

Within the Dirac bracket formalism, we may set xi = 0 and calculate the basic Dirac 
brackets 

{xi, p,}* = si, { * I ,  $J)* = -igij, (3.74 b )  

{$ i ,  PI)* = -tgikgkl,j(l/l, (3.7c) 

{xi, +j)* = 0, {XI, xJ}* = 0. (3.7e,f) 

{A,  BC}* = {A ,  B}*C * B{A, C}* ,  (3.8) 

{Pi, PJ)* = -$igkn, iglm,jgk1+:$2, (3.7d) 

Other canonical calculations can be performed from (3.7) via 

where the minus sign is required if and only if both of A and B are Grassmann. It is 
to be noted that the variables T# are no longer needed, as they can be eliminated from 
Dirac brackets, using xi = 0. Also the Hamiltonian H corresponding to (2.13) is given 

(3.9) 

by 
H = L  U I 2g .ni.Rj-TiRip,jq*hE~p@~*LPyEys*~, 

where 

ri =pi  +$irIj.glk@i+k. (3.10) 

In what follows, any classical brackets employed will be Dirac brackets, so that the 
asterisk will hereafter be left implicit. 

For many purposes, the results (3.7) are not the most convenient ones. Rather it 
is better to use vi as given by (3.10) in the place of pi. Hence it follows (3.7), that 
(3.7~2, c and d )  may be replaced by 

(3.7g9 h )  

{r i ,  'rrj) = -$Rqpq+z+z. (3.7i) 

Some manipulation is required to produce (3.7i). Also it follows from .rri = gvk' that 
Qa takes the simple form 

Qa = +:vi. (3.1 1 )  

k Tj} = - r jk$ 9 {xi, n;} = sj, 
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We turn first to the canonical view of the supersymmetry transformation (2.5). We 
may say that it is generated by Qa if we have 

6 0 '  = i {E,EmpQp, @ I } ,  

which requires 

{Qa,  Qi} = - i E a p 2 p 0 ' .  (3.12) 

The first two components of (3.12) are 

{ Q a ,  X I > =  -+k {Q,, +;} = -itjapxl -iEmpF'. (3.13a, b )  

It is easy to check that insertion of (2.16) into the left sides of these equations and 
use of (3.7) leads to the right sides. The consistency of the same calculation for the 
'F '  component of (3.12) requires use of the equation of motion of +b .  

We turn next to the basic result of the supersymmetry algebra 

{ Q a ,  Q p }  = 2Sa& (3.14) 

Calculation of the left side, using (2.16) and the canonical equations (3.7) does lead 
to the right side with H given by (3.9) upon use of a lemma. The lemma in question 
is (Alvarez-Gaume and Freedman 1983) 

R i p j q + l h E a p @ p + c E y b + !  = - 3 R y p q + L  @e + p P + $ ,  (3.15) 

which holds as a consequence of 

~ a p ~ y a  =z S a y S p ,  -Sa,S,y (3.16) 

and the cyclic property of the Riemann tensor. 

4. Simplified canonical equations 

The canonical equations 

{XI, T I }  = a;, { + I ,  @} = --ig'], { + I ,  = - r ; k ( C l k ,  (3*7g, 6, h )  

{x', IC;> = 0, (3.7 e, f) 
{ T  I ,  7 T } = - - I '  J 2 ~ R l l , p q * P , * : ,  (3.7i) 

{XI, X I }  = 0, 

are probably the most convenient set to use for many canonical calculations because 
Qa and H as given by (3.11) and (3.9) are simple in terms of T ,  and 4:. However, 
there is a simpler set of canonical equations, which separate the ordinary and Grass- 
mann variables and which are crucial for passage to explicit representation of the 
quantum mechanics. 

The first simplifying step is evident. We need the vielbein, defined by 

e'ae'bgtj = ?ab? (4.1 

where Tab is the local flat space metric corresponding to g,. Using 7) to raise and 
lower local indices we define the inverse vielbein by 

eZaelb = 8:. (4.2) 
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Then it is natural to define 

A: = e:+;, (4.3) 

so that 

9: = e',A:. (4.4) 

Hence (3.7b) and (3 .7e )  become 

{A:, A;} = -ivabsap, {XI, A:} = 0. (4.5b, e) 

Further (3.7h) implies 

{A:, % ' j }  = W a j b h i ,  (4.6) 

where Wajb = -wbla is the spin connection of the metric. By virtue of the metric postulate 

Dle;=a,e,(l+wb:e,b-rk,eka =0,  

it can be seen that the spin connection is given by 

From (4.6), we are motivated to replace 7,  by R, given by 

R, = %', -fiW,,bh$hi, 

so that we have 

{ A : ,  R,}=O. 

The replacement of by RI also gives 

{XI, Rj} = 6;. 

(4.8) 

(4.5c) 

(4.5a) 

It will be exactly what we seek if it gives rise to 

{Rz, RI} = 0 (4.5d) 

for then the set XI, RI, A: will satisfy the simplest possible canonical equations (4.5), 
in which the obvious 

{xi, X I }  = 0 (4.5f) 

is adjoined to those already discussed. A non-trivial calculation does serve to confirm 
that (4.5d) is satisfied. 

5. Quantisation 

The basic step in the creation of the quantum theory involves the replacement of real 
classical variables by Hermitian operators in quantum mechanics, and of the Dirac 
brackets of the classical theory by the appropriate quantum brackets divided by i. For 
the theory written in terms of 

x '3 7 7 1 9  CL:, (5.1) 

the non-trivial brackets are 

[XI, 7r1] = is;, {L @a> = g"&% (5.2a, b) 
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[$t, r,I = - i q d u ,  k [Tz, T,I = &,,m:. (5.2c, d )  

No ambiguity should stem from the fact that, as usual, braces in a quantum theory 
denote anticommutators. For the theory written in terms of 

A a  
J9; 

x '9 Rj, 

the non-trivial results are 

(5.3) 

[x', R j ] =  is;, {A:, A i }  = 7)ab6ap. (5.4a, b) 

It should be stressed that there are no ambiguities of orderings of operators on the 
right sides of (5.3) and (5.4) although for (5.2d) this is true only because the Riemann 
tensor is antisymmetric in its last two indices. 

The set (5.3) of variables is important because the quantum mechanical representa- 
tion of it is immediate. Firstly we have for R, the result 

R, = g ~ ' ' ~ ( - i  a / a ~ ' ) g ' / ~  (5.5) 

where, as is well known, the factors involving g = det g are required by Hermiticity. 
Secondly setting 

A" = ( A Y  +iA;) /h ,  (5.6) 

{A", Ab+} = qab. (5.7) 

we get from (5.4b) 

It follows that the A" are a set of n fermionic annihilation operators. Since they 
commute with x i  and RJ, an evident fermionic Fock space representation of them 
therefore exists. An explicit representation of r i  now follows (4.8) and one of 4; 
follows (4.4). The representation (4.8) affords of r i  is well defined quantum mechani- 
cally in virtue of the antisymmetry property of the spin connection. 

The second stage in the setting up of the quantum mechanical version of the N = 1 
supersymmetric nonlinear cr-models consists of giving appropriate generalisations of 
the classical expression (2.16) or (3.1 1) for Qu and of (3.9) of H. Appropriate 
generalisations are furnished by operators which 

(a) are Hermitian, 
(b) satisfy the supersymmetry algebra (3.14), and 
(c) reduce to the corresponding classical results 

when questions of non-commutativity of operators are ignored. They are the subject 
of the next section. 

6. Quantum mechanical definition of QP and H 

It is clear that the real classical supercharge Qu of (3.11) must be replaced in the 
quantum theory by the Hermitian operator 

To justify this, it is necessary to show that 
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follows (5.2) and thereby identify H,,. In fact it is simpler first to calculate H,, using 

(6.3) Hqu = fc Q(I ,  Q(I 1 
and to establish the stronger result (6.2) thereafter. In the calculation of Hqu using 
(6.3) terms of three types arise. 

(A) From use of {$:, lyi}, we get 
Qg”.?r..?r. +tnig”nj ’’ +g.?ri.?rjg?’. I 

1 1  

Direct calculation based on ( 5 . 2 ~ )  equates this to 

where R is the curvature scalar. Passage to a result of this latter sort follows the usual 
discussion of the quantum mechanics of a bosonic particle on a Riemannian manifold 
(de Witt 1957, Charap 1973, Schulman 1981). 

(B) From use of [a, lyi] and [$:, 7rj], we get quite easily a total contribution which 
cancels the last term of (6.4). 

(C) From use of [ri, a’], we get 

QR + $ R i j p &  L $$ (6.5) 

H qu =1 2g -1/4.?rigl/2giJa, Jg - 1 / 4 + i ~  8 ijpq q,i (I ly’ (I + P  p * p .  q 

Hence, we get 

(6.6) 

The results (6.6) for Hq, and (3.9) for the classical Hamiltonian may be compared. 
Passing from (6.6) to a classical limit agrees exactly with the insertion of the classical 
lemma (3.15) into (3.9). However, if we repeat the classical proof of (3.15) in the 
quantum theory, we find that an additional term ( -R)  should be supplied on the 
right-hand side of the equality. No doubt (6.6) is the simplest form to use in the 
quantum mechanics. 

Upon attempting to generalise the above calculation so as to establish (6.2), one 
finds {$:, +‘i} gives a S a ,  structure directly under (A), and terms (B) do the same job 
as they did above. Terms (C) cause problems. They lead directly to 

ma, + iR,,*b @, *”,;. 
To show that the last term is proportional to a,,, in which case the same Hq, emerges 
this way as before, we contract this term in turn with a$ for k = 1,2,3.  For k = 2, u2 
is antisymmetric and gives zero directly. For k = 1, we employ a consequence of the 
completeness of the Pauli matrices 

d p & s  + o : S & p  = d d p y  + ( + b y & s ,  

along with (5.2b) and standard properties of the Riemann tensor to get the required 
vanishing result. The same proof applies to k = 3, and our proof of (6.2) is finished. 

Having justified the quantum mechanical expression (6.1) for the supercharge Q,, 
we may use (6.1) and the commutation relations (5.1) to calculate [Om, x’] and {Q,, $;} 
in the quantum mechanics. The results are seen to be compatible with (3.13) provided 
that one makes the identification of xi with the Hermitian operator f(gu.?ri + .?rigi’). 

Applications of the results of the present paper, e.g. to the solution of the Schrodin- 
ger equation of the supersymmetric nonlinear o-model on a Riemannian manifold or 
to the solution of QaV = 0 for the zero energy eigenstates of H,,, will be returned to 
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elsewhere. For the latter context, we note the following. Equations (6.1) and ( 5 . 2 ~ )  give 
k Qa = $;T, +$+ha F:,. 

Then using ( 5 . 5 ) ,  (4.3) and (4.8), we derive the result 

Qa = - i A z  D,, (6.7) 

where 

D, = e',(a/axi -$oaBb[Aa, A b ] ) .  (6.8) 
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